viernes, 25 de marzo de 2011

TOPOLOGIA

La topología o forma lógica de una red se define como la forma de tender el cable a estaciones de trabajo individuales; por muros, suelos y techos del edificio. Existe un de factores a considerar para determinar cual topología es la más apropiada para una situación dada.
La topología en una red es la configuración adoptada por las estaciones de trabajo para conectarse entre si.
Bus: Esta topología permite que todas las estaciones reciban la información que se transmite, una estación transmite y todas las restantes escuchan. Consiste en un cable con un terminador en cada extremo del que se cuelgan todos los elementos de una . Todos los nodos de la red están unidos a este cable: el cual recibe el nombre de "Backbone Cable". Tanto Ethernet como Local Talk pueden utilizar esta topología.
El bus es pasivo, no se produce regeneración de las señales en cada nodo. Los nodos en una red de "bus" transmiten la información y esperan que ésta no vaya a chocar con otra información transmitida por otro de los nodos. Si esto ocurre, cada nodo espera una pequeña cantidad de tiempo al azar, después intenta retransmitir la información.
Para ver el gráfico seleccione la opción "Descargar" del menú superior
Anillo: Las estaciones están unidas unas con otras formando un círculo por medio de un cable común. El último nodo de la cadena se conecta al primero cerrando el anillo. Las señales circulan en un solo sentido alrededor del círculo, regenerándose en cada nodo. Con esta metodología, cada nodo examina la información que es enviada a través del anillo. Si la información no está dirigida al nodo que la examina, la pasa al siguiente en el anillo. La desventaja del anillo es que si se rompe una conexión, se cae la red completa.
Para ver el gráfico seleccione la opción "Descargar" del menú superior
Estrella: Los datos en estas redes fluyen del emisor hasta el concentrador, este realiza todas las funciones de la red, además actúa como amplificador de los datos.
La red se une en un único , normalmente con un panel de control centralizado, como un concentrador de cableado. Los bloques de información son dirigidos a través del panel de control hacia sus destinos. Este esquema tiene una ventaja al tener un panel de control que monitorea el tráfico y evita las colisiones y una conexión interrumpida no afecta al resto de la red.
Para ver el gráfico seleccione la opción "Descargar" del menú superior
Híbridas: El bus lineal, la estrella y el anillo se combinan algunas veces para formar combinaciones de redes híbridas.
Anillo en Estrella: Esta topología se utiliza con el fin de facilitar la administración de la red. Físicamente, la red es una estrella centralizada en un concentrador, mientras que a nivel lógico, la red es un anillo.
"Bus" en Estrella: El fin es igual a la topología anterior. En este caso la red es un "bus" que se cablea físicamente como una estrella por medio de concentradores.
Estrella Jerárquica: Esta estructura de cableado se utiliza en la mayor parte de las redes locales actuales, por medio de concentradores dispuestos en cascada par formar una red jerárquica.
Para ver el gráfico seleccione la opción "Descargar" del menú superior
Árbol: Esta estructura se utiliza en aplicaciones de televisión por cable, sobre la cual podrían basarse las futuras estructuras de redes que alcancen los hogares. También se ha utilizado en aplicaciones de redes locales analógicas de banda ancha.
Trama: Esta estructura de red es típica de las WAN, pero también se puede utilizar en algunas aplicaciones de redes locales (LAN). Las estaciones de trabajo están conectadas cada una con todas las demás.
Mecanismos para la resolución de conflictos en la transmisión de datos:
CSMA/CD: Son redes con escucha de colisiones. Todas las estaciones son consideradas igual, es por ello que compiten por el uso del canal, cada vez que una de ellas desea transmitir debe escuchar el canal, si alguien está transmitiendo espera a que termine, caso contrario transmite y se queda escuchando posibles colisiones, en este último espera un intervalo de y reintenta de nuevo.
Token Bus: Se usa un token (una trama de datos) que pasa de estación en estación en forma cíclica, es decir forma un anillo lógico. Cuando una estación tiene el token, tiene el exclusivo del bus para transmitir o recibir datos por un tiempo determinado y luego pasa el token a otra estación, previamente designada. Las otras estaciones no pueden transmitir sin el token, sólo pueden escuchar y esperar su turno. Esto soluciona el de colisiones que tiene el mecanismo anterior.
Token Ring: La estación se conecta al anillo por una unidad de interfaz (RIU), cada RIU es responsable de controlar el paso de los datos por ella, así como de regenerar la transmisión y pasarla a la estación siguiente. Si la dirección de la cabecera de una determinada transmisión indica que los datos son para una estación en concreto, la unidad de interfaz los copia y pasa la información a la estación de trabajo conectada a la misma.
Se usa en redes de local con o sin prioridad, el token pasa de estación en estación en forma cíclica, inicialmente en estado desocupado. Cada estación cundo tiene el token (en este momento la estación controla el anillo), si quiere transmitir cambia su estado a ocupado, agregando los datos atrás y lo pone en la red, caso contrario pasa el token a la estación siguiente. Cuando el token pasa de nuevo por la estación que transmitió, saca los datos, lo pone en desocupado y lo regresa a la red.
TOPOLOGÍA DE RED
LONGITUD SEGMENTO MÁXIMO
Ethernet de cable fino (BUS)185 Mts (607 pies)
Ethernet de par trenzado (Estrella/BUS)100 Mts (607 pies)
Token Ring de par trenzado (Estrella/Anillo)100 Mts (607 pies)
ARCNET Coaxial (Estrella)609 Mts (2000 pies)
ARCNET Coaxial (BUS)305 Mts (1000 pies)
ARCNET de par trenzado (Estrella)122 Mts (400 pies)
ARCNET de par trenzado (BUS)122 Mts (400 pies)

InterRedes: Un nuevo concepto que ha surgido de estos esquemas anteriores es el de Intercedes, que vincular redes como si se vincularán estaciones.
Este concepto y las ideas que de este surgen, hace brotar un nuevo especial de dispositivo que es un vinculador para interconectar redes entre sí (la tecnología de Internet está basada en el concepto de InterRedes), el dispositivo en cuestión se denomina "dispositivo de interconexión". Es decir, lo que se conecta, son redes locales de trabajo.
Un enlace central es utilizado a menudo en los entornos locales, como un edificio. Los servicios públicos como las empresas de telefonía, proporcionan enlaces de área metropolitana o de gran alcance.
Las tres topologías utilizadas para estos tipos de redes son:
Red de Enlace Central: Se encuentra generalmente en los entornos de oficina o campos, en los que las redes de los pisos de un edificio se interconectan sobre cables centrales. Los Bridges y los Routers gestionan el tráfico entre segmentos de red conectados.
Red de Malla: Esta involucra o se efectúa a través de redes WAN, una red malla contiene múltiples caminos, si un camino falla o está congestionado el tráfico, un paquete puede utilizar un camino diferente hacia el destino. Los routers se utilizan para interconectar las redes separadas.
Red de Estrella Jerárquica: Esta estructura de cableado se utiliza en la mayor parte de las redes locales actuales, por medio de concentradores dispuestos en cascada para formar una red jerárquica.
Es un sistema compuesto por un gran número de elementos básicos, agrupados en capas y que se encuentran altamente interconectados. Esta estructura posee varias entradas y salidas, las cuales serán entrenadas para reaccionar (valores O), de una manera deseada, a los estímulos de entrada (valores I).
Estos sistemas emulan, de una cierta manera, al cerebro humano. Requieren aprender a comportarse y alguien debe encargarse de enseñarles o entrenarles, en base a un conocimiento previo del entorno del problema.
Las redes neuronales no son más que un modelo artificial y simplificado del cerebro humano, que es el ejemplo más perfecto del que disponemos para un sistema que es capaz de adquirir conocimiento a través de la experiencia. Una red neuronal es "un nuevo sistema para el tratamiento de la información, cuya unidad básica de procesamiento está inspirada en la célula fundamental del sistema nervioso humano: la neurona".
Por lo tanto, las Redes Neuronales:
  • Consisten de unidades de procesamiento que intercambian datos o información.
  • Se utilizan para reconocer patrones, incluyendo imágenes, manuscritos y secuencias de tiempo, tendencias financieras.
  • Tienen capacidad de aprender y mejorar su funcionamiento.
Una primera clasificación de los modelos de redes neuronales podría ser, atendiendo a su similitud con la realidad biológica:
1) El modelo de tipo biológico. Este comprende las redes que tratan de simular los sistemas neuronales biológicos, así como las funciones auditivas o algunas funciones básicas de la visión.
Se estima que el cerebro humano contiene más de cien mil millones de neuronas estudios sobre la anatomía del cerebro humano concluyen que hay más de 1000 sinápsis a la entrada y a la salida de cada neurona. Es importante notar que aunque el tiempo de conmutación de la neurona ( unos pocos milisegundos) es casi un millón de veces menor que en los actuales elementos de las computadoras, ellas tienen una conectividad miles de veces superior que las actuales supercomputadoras.
Las neuronas y las conexiones entre ellas (sinápsis) constituyen la clave para el procesado de la información.
Algunos elementos ha destacar de su estructura histológica son:
Las dendritas, que son la vía de entrada de las señales que se combinan en el cuerpo de la neurona. De alguna manera la neurona elabora una señal de salida a partir de ellas.
El axón, que es el camino de salida de la señal generada por la neurona.
Las sinapsis, que son las unidades funcionales y estructurales elementales que median entre las interacciones de las neuronas. En las terminaciones de las sinapsis se encuentran unas vesículas que contienen unas sustancias químicas llamadas neurotransmisores, que ayudan a la propagación de las señales electroquímicas de una neurona a otra.
2) El modelo dirigido a aplicación. Este modelo no tiene por qué guardar similitud con los sistemas biológicos. Su arquitectura está fuertemente ligada a las necesidades de las aplicaciones para la que es diseñada.

Aplicación: Esta tecnología es muy útil, estas aplicaciones son aquellas en las cuales se dispone de un registro de datos y nadie sabe la estructura y los parámetros que pudieran modelar el problema. En otras palabras, grandes cantidades de datos y mucha incertidumbre en cuanto a la manera de como estos son producidos.
Como ejemplos de las aplicaciones de las redes neuronales (Neural Networks) se pueden citar: las variaciones en la bolsa de valores, los riesgos en préstamos, el clima local, el reconocimiento de patrones (rostros) y la minería de datos (data mining).
Diseño: Se pueden realizar de varias maneras. En hardware utilizando transistores a efecto de campo (FET) o amplificadores operacionales, pero la mayoría de las RN se construyen en software, esto es en programas de computación.
     Existen muy buenas y flexibles herramientas disponibles en Internet que pueden simular muchos tipos de neuronas y estructuras.    
Elemento Básico. Neurona Artifial: Pueden ser con salidas binarias, análogas o con codificación de pulsos (PCM). Es la unidad básica de procesamiento que se conecta a otras unidades a través de conexiones sinápticas.    
Una neurona artificial es un elemento con entradas, salida y memoria que puede ser realizada mediante software o hardware. Posee entradas (I) que son ponderadas (w), sumadas y comparadas con un umbral (t).
La Estructura de la Red (Neural Network): La interconexión de los elementos básicos. Es la manera como las unidades básicas se interconectan.
Por lo general estas están agrupadas en capas (layers), de manera tal, que las salidas de una capa están completamente conectadas a las entradas de la capa siguiente; en este caso decimos que tenemos una red completamente conectada.
Para obtener un resultado aceptable, el número de capas debe ser por lo menos tres. No existen evidencias, de que una red con cinco capas resuelva un problema que una red de cuatro capas no pueda. Usualmente se emplean tres o cuatro capas.
Para ver el gráfico seleccione la opción "Descargar" del menú superior
Las redes neuronales artificiales presentan un gran número de características semejantes a las del cerebro. Por ejemplo, son capaces de aprender de la experiencia, de generalizar de casos anteriores a nuevos casos, de abstraer características esenciales a partir de entradas que representan información irrelevante, etc. Esto hace que ofrezcan numerosas ventajas y que este tipo de tecnología se esté aplicando en múltiples áreas.
Entre las ventajas se incluyen:
Aprendizaje Adaptativo: Capacidad de aprender a realizar tareas basadas en un entrenamiento o en una experiencia inicial.
Auto-organización: Una red neuronal puede crear su propia organización o representación de la información que recibe mediante una etapa de aprendizaje.
Tolerancia a Fallos: La destrucción parcial de una red conduce a una degradación de su estructura; sin embargo, algunas capacidades de la red se pueden retener, incluso sufriendo un gran daño.
Operación en Tiempo Real: Los cómputos neuronales pueden ser realizados en paralelo; para esto se diseñan y fabrican máquinas con hardware especial para obtener esta capacidad.
Fácil Inserción Dentro de la Tecnología Existente: Se pueden obtener chips especializados para redes neuronales que mejoran su capacidad en ciertas tareas. Ello facilitará la integración modular en los sistemas existentes.
ISDN (Red Digital de Servicios Integrados): Implica la digitalización de la red telefónica, que permite que voz, datos, graficas, música, videos y otros materiales fuente se transmitan a través de los cables telefónicos. La evolución de ISDN representa un esfuerzo para estandarizar los servicios de suscriptor, interfases de usuario/red y posibilidades de red y de interredes.
RDSI Red Digital de Servicios Integrados: Una línea RDSI es muy parecida a una línea telefónica Standard, excepto que es totalmente digital y ofrece una velocidad de conexión mucho más alta, hasta de 128 kbps.
Las líneas RDSI están pensadas para ser usadas por pequeñas empresas y personas que necesitan usar Internet en su vida profesional. Si eliges una conexión por RDSI, lo primero que hace falta es una línea telefónica RDSI y un adaptador RDSI.
También se puede comprar un paquete integrado que incluya línea RDSI, hardware, software y soporte técnico. Si ya tienes una red local (LAN) en tu oficina y quieres dar acceso a Internet a varios ordenadores, también se puede usar una configuración multipunto.

Este tipo de solución es más económico que la "tradicional" con router y cortafuegos.

POWER POINT

Microsoft PowerPoint es un programa de presentación desarrollado para sistemas operativos Microsoft Windows y Mac OS, ampliamente usado en distintos campos como la enseñanza, negocios, etc. Según las cifras de Microsoft Corporation, cerca de 30 millones de presentaciones son realizadas con PowerPoint cada día. Forma parte de la suite Microsoft Office.
Es un programa diseñado para hacer presentaciones con texto esquematizado, fácil de entender, animaciones de texto e imágenes prediseñadas o importadas desde imágenes de la computadora. Se le pueden aplicar distintos diseños de fuente, plantilla y animación. Este tipo de presentaciones suele ser muy llamativo y mucho más práctico que los de Microsoft Word.
PowerPoint es uno de los programas de presentación más extendidos. Viene integrado en el paquete Microsoft Office como un elemento más, que puede aprovechar las ventajas que le ofrecen los demás componentes del equipo para obtener un resultado óptimo.
Con PowerPoint y los dispositivos de impresión adecuados se pueden realizar muchos tipos de resultados relacionados con las presentaciones: transparencias, documentos impresos para los asistentes a la presentación, notas y esquemas para el presentador, o diapositivas estándar de 35mm.

TPC/IP

TCP/IP es un conjunto de protocolos. La sigla TCP/IP significa "Protocolo de control de transmisión/Protocolo de Internet" y se pronuncia "T-C-P-I-P". Proviene de los nombres de dos protocolos importantes del conjunto de protocolos, es decir, del protocolo TCP y del protocolo IP.
En algunos aspectos, TCP/IP representa todas las reglas de comunicación para Internet y se basa en la noción de dirección IP, es decir, en la idea de brindar una dirección IP a cada equipo de la red para poder enrutar paquetes de datos. Debido a que el conjunto de protocolos TCP/IP originalmente se creó con fines militares, está diseñado para cumplir con una cierta cantidad de criterios, entre ellos:
El conocimiento del conjunto de protocolos TCP/IP no es esencial para un simple usuario, de la misma manera que un espectador no necesita saber cómo funciona su red audiovisual o de televisión. Sin embargo, para las personas que desean administrar o brindar soporte técnico a una red TCP/IP, su conocimiento es fundamental.
La diferencia entre estándar e implementación
En general, TCP/IP relaciona dos nociones:
  • la noción de estándar: TCP/IP representa la manera en la que se realizan las comunicaciones en una red;
  • la noción de implementación: la designación TCP/IP generalmente se extiende a software basado en el protocolo TCP/IP. En realidad, TCP/IP es un modelo cuya aplicación de red utilizan los desarrolladores. Las aplicaciones son, por lo tanto, implementaciones del protocolo TCP/IP.
TCP/IP es un modelo de capas
Para poder aplicar el modelo TCP/IP en cualquier equipo, es decir, independientemente del sistema operativo, el sistema de protocolos TCP/IP se ha dividido en diversos módulos. Cada uno de éstos realiza una tarea específica. Además, estos módulos realizan sus tareas uno después del otro en un orden específico, es decir que existe un sistema estratificado. Ésta es la razón por la cual se habla de modelo de capas.
El término capa se utiliza para reflejar el hecho de que los datos que viajan por la red atraviesan distintos niveles de protocolos. Por lo tanto, cada capa procesa sucesivamente los datos (paquetes de información) que circulan por la red, les agrega un elemento de información (llamado encabezado) y los envía a la capa siguiente.
El modelo TCP/IP es muy similar al modelo OSI (modelo de 7 capas) que fue desarrollado por la Organización Internacional para la Estandarización (ISO) para estandarizar las comunicaciones entre equipos.
Presentación del modelo OSI
OSI significa Interconexión de sistemas abiertos. Este modelo fue establecido por ISO para implementar un estándar de comunicación entre equipos de una red, esto es, las reglas que administran la comunicación entre equipos. De hecho, cuando surgieron las redes,cada fabricante contaba con su propio sistema (hablamos de un sistema patentado), con lo cual coexistían diversas redes incompatibles. Por esta razón, fue necesario establecer un estándar.
La función del modelo OSI es estandarizar la comunicación entre equipos para que diferentes fabricantes puedan desarrollar productos (software o hardware) compatibles (siempre y cuando sigan estrictamente el modelo OSI).
La importancia de un sistema de capas
El objetivo de un sistema en capas es dividir el problema en diferentes partes (las capas), de acuerdo con su nivel de abstracción.
Cada capa del modelo se comunica con un nivel adyacente (superior o inferior). Por lo tanto, cada capa utiliza los servicios de las capas inferiores y se los proporciona a la capa superior.
El modelo OSI
El modelo OSI es un modelo que comprende 7 capas, mientras que el modelo TCP/IP tiene sólo 4. En realidad, el modelo TCP/IP se desarrolló casi a la par que el modelo OSI. Es por ello que está influenciado por éste, pero no sigue todas las especificaciones del modelo OSI. Las capas del modelo OSI son las siguientes:
Nivel
Modelo antiguo
Modelo nuevo
Nivel 7<><>
Nivel 6<><>
Nivel 5<><>
Nivel 4<><>
Nivel 3<><>
Nivel 2< Liaison><>
Nivel 1<><>


  • La capa física define la manera en la que los datos se convierten físicamente en señales digitales en los medios de comunicación (pulsos eléctricos, modulación de luz, etc.).
  • La capa de enlace de datos define la interfaz con la tarjeta de interfaz de red y cómo se comparte el medio de transmisión.
  • La capa de red permite administrar las direcciones y el enrutamiento de datos, es decir, su ruta a través de la red.
  • La capa de transporte se encarga del transporte de datos, su división en paquetes y la administración de potenciales errores de transmisión.
  • La capa de sesión define el inicio y la finalización de las sesiones de comunicación entre los equipos de la red.
  • La capa de presentación define el formato de los datos que maneja la capa de aplicación (su representación y, potencialmente, su compresión y cifrado) independientemente del sistema.
  • La capa de aplicación le brinda aplicaciones a la interfaz. Por lo tanto, es el nivel más cercano a los usuarios, administrado directamente por el software.
El modelo TCP/IP
El modelo TCP/IP, influenciado por el modelo OSI, también utiliza el enfoque modular (utiliza módulos o capas), pero sólo contiene cuatro:
<THMOD&EGRAVE;LE th IP< TCP><THMOD&EGRAVE;LE th OSI<>

Capa de aplicación<>
<>

<>

< Transport><>

< Internet><>

Capa de acceso a la red<>

<>


Como puede apreciarse, las capas del modelo TCP/IP tienen tareas mucho más diversas que las del modelo OSI, considerando que ciertas capas del modelo TCP/IP se corresponden con varios niveles del modelo OSI.
Las funciones de las diferentes capas son las siguientes:
  • capa de acceso a la red: especifica la forma en la que los datos deben enrutarse, sea cual sea el tipo de red utilizado;
  • capa de Internet: es responsable de proporcionar el paquete de datos (datagrama);
  • capa de transporte: brinda los datos de enrutamiento, junto con los mecanismos que permiten conocer el estado de la transmisión;
  • capa de aplicación: incorpora aplicaciones de red estándar (Telnet, SMTP, FTP, etc.).
A continuación se indican los principales protocolos que comprenden el conjunto TCP/IP:
<THMOD&EGRAVE;LE th IP< TCP>

Aplicaciones de red

TCP o UDP
<>

Encapsulación de datos
Durante una transmisión, los datos cruzan cada una de las capas en el nivel del equipo remitente. En cada capa, se le agrega información al paquete de datos. Esto se llama encabezado, es decir, una recopilación de información que garantiza la transmisión. En el nivel del equipo receptor, cuando se atraviesa cada capa, el encabezado se lee y después se elimina. Entonces, cuando se recibe, el mensaje se encuentra en su estado original.

En cada nivel, el paquete de datos cambia su aspecto porque se le agrega un encabezado. Por lo tanto, las designaciones cambian según las capas:
  • el paquete de datos se denomina mensaje en el nivel de la capa de aplicación;
  • el mensaje después se encapsula en forma de segmento en la capa de transporte;
  • una vez que se encapsula el segmento en la capa de Internet, toma el nombre de datagrama;
  • finalmente, se habla de trama en el nivel de capa de acceso a la red.
Capa de acceso a la red
La capa de acceso a la red es la primera capa de la pila TCP/IP. Ofrece la capacidad de acceder a cualquier red física, es decir, brinda los recursos que se deben implementar para transmitir datos a través de la red.
Por lo tanto, la capa de acceso a la red contiene especificaciones relacionadas con la transmisión de datos por una red física, cuando es una red de área local (Red en anillo, Ethernet, FDDI), conectada mediante línea telefónica u otro tipo de conexión a una red. Trata los siguientes conceptos:
  • enrutamiento de datos por la conexión;
  • coordinación de la transmisión de datos (sincronización);
  • formato de datos;
  • conversión de señal (análoga/digital);
  • detección de errores a su llegada.
  • ...
Afortunadamente, todas estas especificaciones son invisibles al ojo del usuario, ya que en realidad es el sistema operativo el que realiza estas tareas, mientras los drivers de hardware permiten la conexión a la red (por ejemplo, el driver de la tarjeta de red).
La capa de Internet
La capa de Internet es la capa "más importante" (si bien todas son importantes a su manera), ya que es la que define los datagramas y administra las nociones de direcciones IP.
Permite el enrutamiento de datagramas (paquetes de datos) a equipos remotos junto con la administración de su división y ensamblaje cuando se reciben.
La capa de Internet contiene 5 protocolos:
Los primeros tres protocolos son los más importantes para esta capa.
La capa de transporte
Los protocolos de las capas anteriores permiten enviar información de un equipo a otro. La capa de transporte permite que las aplicaciones que se ejecutan en equipos remotos puedan comunicarse. El problema es identificar estas aplicaciones.
De hecho, según el equipo y su sistema operativo, la aplicación puede ser un programa, una tarea, un proceso, etc.
Además, el nombre de la aplicación puede variar de sistema en sistema. Es por ello que se ha implementado un sistema de numeración para poder asociar un tipo de aplicación con un tipo de datos. Estos identificadores se denominan puertos.
La capa de transporte contiene dos protocolos que permiten que dos aplicaciones puedan intercambiar datos independientemente del tipo de red (es decir, independientemente de las capas inferiores). Estos dos protocolos son los siguientes:
La capa de aplicación
La capa de aplicación se encuentra en la parte superior de las capas del protocolo TCP/IP. Contiene las aplicaciones de red que permiten la comunicación mediante las capas inferiores.
Por lo tanto, el software en esta capa se comunica mediante uno o dos protocolos de la capa inferior (la capa de transporte), es decir, TCP o UDP.
Existen diferentes tipos de aplicaciones para esta capa, pero la mayoría son servicios de red o aplicaciones brindadas al usuario para proporcionar la interfaz con el sistema operativo. Se pueden clasificar según los servicios que brindan:
  • servicios de administración de archivos e impresión (transferencia);
  • servicios de conexión a la red;
  • servicios de conexión remota;
  • diversas utilidades de Internet.